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c© Società Italiana di Fisica

Springer-Verlag 2000

Higher dimensional operator corrections
to the goldstino Goldberger–Treiman vertices
Taekoon Leea

Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

Received: 22 December 1998 / Revised version: 1 July 1999 /
Published online: 17 February 2000 – c© Springer-Verlag 2000

Abstract. The goldstino–matter interactions given by the Goldberger–Treiman relations can receive higher
dimensional operator corrections of O(q2/M2), where M denotes the mass of the mediators through which
SUSY breaking is transmitted. These corrections in the gauge mediated SUSY breaking models arise
from loop diagrams, and an explicit calculation of such corrections is presented. It is emphasized that the
Goldberger–Treiman vertices are valid only below the mediator scale, and at higher energies goldstinos
decouple from the MSSM fields. The implication of this fact for gravitino cosmology in GMSB models is
mentioned.

The interactions of the light gravitino with matter are
dominated by the spin 1/2 longitudinal component of the
gravitino, which is essentially the goldstino eaten by the
gravitino via the supersymmetric Higgs mechanism. At
energies much higher than the gravitino mass, the super-
symmetric version of the equivalence theorem [1,2] allows
one to replace the gravitino with the goldstino. The low
energy interactions of a goldstino with matter fields, which
in this letter are assumed to be the fields in the mini-
mal supersymmetric standard model (MSSM), are com-
pletely fixed model-independently by the so called gold-
stino Goldberger–Treiman vertices [1,3] which depend on
the mass splittings of the superpartners. This is similar to
the Goldberger–Treiman relations in pion–nucleon inter-
actions which also depend on the chiral symmetry break-
ing parameters, namely, the nucleon masses.

At high energies the goldstino Goldberger–Treiman in-
teractions are expected to get corrections of O(q2), where
q2 denotes generic Lorentz invariants of the external mo-
menta. At first glance, one might think that this correction
is suppressed by 1/F , where F is the goldstino decay con-
stant, in analogy to the correction in the pion–nucleon in-
teraction which is of O(q2/f2

π). However, unlike the pion–
nucleon case in which there is only one fundamental scale,
namely, fπ, there can be multiple scales in realistic SUSY
models, so it is possible that the correction is suppressed
by 1/M2

X , where MX is an intermediate scale between
the MSSM scale and F 1/2. If this is indeed the case, the
corrections can be much larger than a naive expectation
based on the analogy to the Goldberger–Treiman relations
in hadron physics. In this letter, we show that the cor-
rections to the goldstino Goldberger–Treiman couplings
can be suppressed by an intermediate scale by an explicit
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calculation of such corrections in gauge mediated SUSY
breaking (GMSB) models [4].

In GMSB models, SUSY breaking occurs in a hidden
sector and is transmitted to the MSSM sector through
gauge interactions between mediators and the MSSM
fields. The mediator scale in these models can be much
lower than the SUSY breaking scale. Because the SUSY
breaking occurs in the hidden sector, there is no tree
level coupling between the goldstino and the MSSM fields,
and the Goldberger–Treiman vertices are induced through
loop diagrams. Since the goldstino–matter interaction
arises from loops, it becomes clear that the correction to
the Goldberger–Treiman vertices can be O(q2/M2), where
M denotes the mass of the mediators that go through the
loop diagrams, unless there is an exact cancellation among
the diagrams. We shall see that such a cancellation does
not occur in GMSB models.

We consider a GMSB model in which there is a gauge
singlet superfield S through which the hidden sector and
the visible sector are connected. S communicates to the
MSSM fields through interactions with a set of mediators
{q1i, q2i} via the superpotential

L w = h

Nq∑
i

Sq1iq2i, (1)

where Nq denotes the number of mediators, and h is a
coupling constant. Note that q1i, q2i carry opposite stan-
dard model gauge quantum numbers, respectively. For our
purpose, the details of the interaction between S and the
hidden sector fields are not needed; The only requirement
is that the VEVs 〈Fs〉 and 〈S〉 are nonvanishing.

For simplicity we first consider SUSY QED for the
MSSM sector, since the corrections to the Goldberger–
Treiman vertices in non-abelian gauge theories turn out
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to be identical to those of the abelian case. The goldstino
Goldberger–Treiman vertices between a massless
Weyl fermion (ψ), sfermion (φ) and gauge boson (Aµ),
gaugino (λ) are given by [1,5]

LGT =
m2
φ

F
χψφ∗ +

imλ√
2F

χσµνλFµν

− emλ√
2F

φ∗φχλ+ h.c., (2)

where χ denotes the goldstino, mφ, mλ are the sfermion
and gaugino masses, respectively, and e is the gauge cou-
pling. Throughout this paper we follow the convention for
spinors and metric given in [6], except that our gaugino λ
is related to the gaugino in [6] by λ = −iλWB . Note that
the metric in this convention is Diag(−1, 1, 1, 1).

The interaction lagrangian in SUSY QED is given by

LQED = −eAµψσµψ + ieAµ(φ∗∂µφ− ∂µφ∗φ)

−
√

2e(φ∗ψλ+ φψ̄λ̄) − e2

2
(φ∗φ)2

− e2AµA
µφ∗φ, (3)

and the couplings between the mediators and the SUSY
QED fields are given by

L1 = −eAµ
[
Ψ1iσ

µΨ1i − Ψ2iσ
µΨ2i

+ i(Φ∗1i∂
µΦ1i − ∂µΦ∗1iΦ1i − Φ∗2i∂

µΦ2i + ∂µΦ∗2iΦ2i)]

−
√

2e(Φ∗1iΨ1iλ− Φ∗2iΨ2iλ+ h.c.)
− e2φ∗φ(Φ∗1iΦ1i − Φ∗2iΦ2i), (4)

where the last term arises from the D term.
When SUSY is broken in the hidden sector and FS de-

velops a nonzero VEV, a mixing occurs between the spin
half component ψS of the chiral field S and the goldstino
from the hidden sector. Due to the mixing, the true gold-
stino has a ψS component given by

χ = −FS
F
ψS + · · · , (5)

where the ignored terms involve only hidden sector
fermions. For small FS/F , which is assumed in this letter,
the above relation can be inverted, giving

ψS =
FS
F
χ+ · · · . (6)

Now using the superpotential (1) we obtain the interaction
between the goldstino and the mediators as

L2 = h
FS
F

(Φ1iΨ2iχ+ Φ2iΨ1iχ+ h.c.). (7)

Note that this interaction is nothing but the Goldberger–
Treiman vertex in the mediator sector since hFS is the
mass squared splitting of the mediators.

From the above interactions, it is easy to see that
the Goldberger–Treiman vertices (2) arise from loop di-
agrams. The φ∗ψχ vertex in (2) comes from the two-loop

diagrams (Fig. 1) and the Aµλχ, φ∗φλχ vertices arise from
the one-loop diagrams in Fig. 2 and Fig. 3, respectively.
Phenomenologically, at high energies the dim-5 operators
in the Goldberger–Treiman vertices are more interesting
since the cross sections due to the dim-4 operator are al-
ways suppressed by O(m2/s), where m denotes the soft
masses in MSSM and s is the c.m. energy squared, com-
pared to those from the dim-5 operators. We therefore
consider the higher dimensional operator corrections only
for the dim-5 operators.

Let us first consider the Aµλχ vertex in (2). We first
assume that the mass splitting between the superpartners
in the mediator sector is much smaller than the mediator
mass. This requires

hS2 � FS . (8)

Then, as mentioned, this vertex arises from the diagrams
in Fig. 2. There are other one-loop diagrams; however,
they are suppressed by O(FS/hS2) compared to those in
Fig. 2 and so can be ignored. It is straightforward to cal-
culate the diagrams. First the diagram (1) gives

A1 = i
√

2he2NqMFS
F

×
∫ 3∏

i

d4piλ̃(p1)χ̃(p2)Ãµ(p3)(2π)4

× δ4

(
3∑
i

pi

)
I(1)
µ (p1, p2,M), (9)

where

I(1)
µ (p1, p2,M) =

i
16π2

∫ 3∏
i

dxiδ

(
3∑
1

xi − 1

)
(10)

×
[
(1 − 2x1)p1µ − (1 − 2x2)p2µ

M2 − t2 + x1p2
1 + x2p2

2

]
,

with
tµ = (x1p1 − x2p2)µ. (11)

Here xi are the Feynman parameters, M is the mediator
mass

M = h〈S〉, (12)

and the Fourier transform is defined as

f̃(p) =
∫

d4p

(2π)4
f(x)eip·x. (13)

From the diagrams (2) and (3) we get

A2 = −i
√

2he2NqMFS
F

∫ 3∏
i

d4pi

× λ̃(p1)σµσ̄ν χ̃(p2)Ãµ(p3)(2π)4

× δ4

(
3∑
i

pi

)
I(2)
ν (p1, p2,M), (14)
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Fig. 1. Examples of two-loop diagrams
that give rise to the φ∗ψχ Goldberger–
Treiman vertex. Wavy lines denote
gauge bosons and the thick solid
and dashed lines denote fermionic and
bosonic mediators, respectively
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Fig. 2. Diagrams that give rise to
the Aµλχ Goldberger–Treiman vertex.
Wavy lines denote gauge bosons and
the thick solid and dashed lines de-
note fermionic and bosonic mediators,
respectively. q1 and q2 denote mediators

where

I(2)
ν (p1, p2,M) = − i

16π2

∫ 3∏
i

dxiδ

(
3∑
1

xi − 1

)

×
[

(t+ p2)ν
M2 − t2 + x1p2

1 + x2p2
2

]
, (15)

and

A3 = −i
√

2he2NqMFS
F

∫ 3∏
i

d4pi

× λ̃(p1)σν σ̄µχ̃(p2)Ãµ(p3)(2π)4

× δ4

(
3∑
i

pi

)
I(3)
ν (p1, p2,M), (16)

with
I(3)
ν (p1, p2,M) = −I(2)

ν (p2, p1,M). (17)

The three other diagrams obtained from diagrams (1), (2)
and (3) by exchanging the mediators q1i ↔ q2i give iden-
tical amplitudes to their corresponding diagrams. Now for
small external momenta compared to the mediator mass,

we can expand in 1/M2 the denominators in I(i) and in-
tegrate over xi explicitly. Adding the six diagrams, this
gives to O(pi · pj/M2)

A =
6∑
1

Ai = −
√

2mλ

F

∫ 3∏
i

d4pi

× λ̃(p1)σµν χ̃(p2)Ãµ(p3)(2π)4δ4
(

3∑
i

pi

)

×
[
1 − 1

6M2 (p2
1 + p1 · p2 + p2

2)
]

(p1 + p2)ν , (18)

where mλ is the one-loop gaugino mass [4]

mλ =
2e2NqFS
16π2〈S〉 . (19)

Converting this to the coordinate space we obtain the
Goldberger–Treiman vertex for Aµλχ and its higher di-
mensional operator correction:

A =
∫

d4xLχλAµ
(x), (20)
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Fig. 3. Diagrams that give rise to the χλφ∗φ Goldberger–
Treiman vertex. The thick solid and dashed lines denote
fermionic and bosonic mediators, respectively. q1, q2 denote
mediators

with

LχλAµ =
imλ√
2F

(21)

×
[
χσµν

(
1 +

1
6M2 (

←
∂

2
+
←
∂ · →∂ +

→
∂

2
)
)
λ

]
Fµν .

Note that no on-shell condition for the goldstino was used
in deriving (21).

The other dim-5 vertex of φ∗φλχ in the Goldberger–
Treiman interaction arises from the two diagrams in Fig. 3.
A straightforward calculation of the diagrams gives

i
2
√

2he3NqMFS
F

∫ 3∏
i

d4pi (22)

×λ̃(p1)χ̃(p2)φ̃∗φ(p3)(2π)4δ4
(

3∑
i

pi

)
I(p1, p2,M),

where

I(p1, p2,M) =
i

16π2

∫ 3∏
i

dxi (23)

× δ

(
3∑
1

xi − 1

)[
1

M2 − t2 + x1p2
1 + x2p2

2

]
.

Expanding in 1/M2 the denominator of the integrand in I
and integrating over xi we obtain the Goldberger–Treiman
vertex and its correction:

Aφ∗φλχ =
∫

d4xLφ∗φλχ(x), (24)

with

Lφ∗φλχ = − emλ√
2F

×
[
χ

(
1 +

1
6M2 (

←
∂

2
+
←
∂ · →∂ +

→
∂

2
)
)
λ

]
φ∗φ. (25)

Note that the higher dimensional operator corrections in
(21) and (25) are independent of the number of the medi-
ators Nq.

For non-abelian gauge theory, the corrections to the
Goldberger–Treiman vertices can be found in essentially

µ

µ λ
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−

Fig. 4. Diagram for µ−µ+ → χλ

the same way as in the abelian case. For SUSY QCD,
for example, the Goldberger–Treiman vertices including
the higher dimensional operator corrections for the dim-5
operators are given by

L
QCD
GT =

m2
φ −m2

ψ

F
χψiφ

∗
i

+
imλ√
2F

[
χσµν

(
1 +

1
6M2 (

←
∂

2
+
←
∂ · →∂ +

→
∂

2
)
)
λa
]
F aµν

− gmλ√
2F

[
χ

(
1 +

1
6M2 (

←
∂

2
+
←
∂ · →∂ +

→
∂

2
)
)
λa
]
φ∗i T

a
ijφj

+h.c., (26)

where g is the gauge coupling and T aij are the gauge group
generators.

These higher dimensional operator corrections can af-
fect the goldstino production rate at high energy scatter-
ing near the threshold of the mediator particles. Consider,
for example, the µ−µ+ → χλ process studied in [7–9]. The
dominant amplitude for the process comes from the dia-
gram in Fig. 4. The cross section to O(s/M2) from this
diagram using the interaction (21) is

σ = σ0

(
1 +

s

6M2

)
, (27)

where

σ0 =
e2m2

λ

24πF 2 , (28)

and s is the c.m. energy squared. This shows that, at
s1/2 = M , for example, the goldstino production rate is
increased by about 17% compared to that obtained with-
out the higher dimensional operator correction. Of course,
it would be very challenging to observe the direct produc-
tion of goldstinos in GMSB models since in these models
F 1/2 is generally too large for accelerator access. However,
in models in which the SUSY breaking scale is accessible
to accelerators, the higher dimensional operator correc-
tions to the Goldberger–Treiman vertices could be used
in probing the underlying SUSY breaking mechanism.

The corrections studied here can also have an impor-
tant consequence in gravitino cosmology in GMSB models.
The fact that the goldstino–matter interaction arises from
loop diagrams indicates that goldstinos decouple from the
MSSM fields at energies above the mediator mass. This
becomes clear from (10), (15) and (23) which show that at
high energies the goldstino–matter couplings decrease in
proportion toM2/E2, where E denotes the energy scale of
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the process in consideration, compared to the Goldberger–
Treiman vertices. This also implies that in the early uni-
verse light gravitinos decouple linearly in M2/T 2 from the
MSSM fields at a temperature higher than the mediator
mass. It is therefore clear that the Goldberger–Treiman
vertices are valid only below the mediator scale, and can-
not be used at energies higher than the mediator mass.
However, this fact has not been taken into account in
the existing bound on the reheating temperature obtained
from the gravitino overproduction [10]. When the decou-
pling is taken into account, one can expect that gravitino
production at temperatures above the mediator scale is
mostly due to the mediators whereas the MSSM fields con-
tribution to the gravitino production is highly suppressed.
This issue is currently under investigation [11].
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